2011 Chevrolet Volt charges toward production
Three years ago this December we first walked into a Manhattan meeting room for a backdrop meeting on a new concept being developed by General Motors for the upcoming Detroit Auto Show. Earlier that year, the release of a documentary called Who Killed the Electric Car made the then largest automaker in the world the subject of some well deserved criticism for its handling of the end of the EV1 program. The movie and announcement of the all-electric Tesla Roadster lit a fire under GM to get back into the plug-in electric vehicle game.
What we saw that day in NYC was a description of new power train architecture then dubbed E-Flex. GM folk on hand that day built-in vehicle line executive Tony Posawatz and former VP for environmental affairs Beth Lowery. They explained that among the biggest training learned from the EV1 program were that range anxiety and lack of practicality would make a car like EV1 nearly impossible to sell in the mass market. The engineers went back to the drawing board to address those issues and came up with the extended range electric vehicle, or ER-EV. The Volt concept was approved for production mere months after it was revealed at the 2007 Detroit Auto Show. At this week's LA Auto Show, GM is publicly showing the production intent version of the Volt. Before that, however, we were among the first to drive a Volt with its range extender running. Read all about it after the jump.
We've had two previous in-motion experiences with the Volt. Last April we had the opportunity to drive one of the powertrain mules, which put the renamed Voltec powertrain into the body shell of the Cruze that shares its platform with the Volt. In August we got to ride (not drive) in one of the pre-production Volt integration vehicle engineering release prototypes (IVERs) with now former global chief engineer Frank Weber.
We trekked out to Dodger Stadium on Sunday afternoon before this week's press days for the LA Auto Show for our session with the actual preproduction Volt. Chevrolet set up a driving loop in one of the parking lots where we got to try out a variety of different maneuvers with the car. This time we would get to actually drive the pre-production car from pure battery power to its charge sustaining mode.
The car that GM made available was one of the 80 IVER pre-production prototypes built this past summer. Unlike the other IVERs, this one was cleaned up and finished for auto show display and media drives. Most inner surfaces of these IVERs don't have the proper graining that will be on production cars or the production light clusters, but GM pulled together enough prototype parts to make them look essentially complete. In addition, unlike most of the IVERs that were finished off in primer grey, this car was painted in the same silver-green color that was the subject of GM's color contest. The winner of the contest will be announced on Tuesday here in LA.
Like many modern cars, the Volt doesn't uses a fob instead of a key with a start/stop button on the left side of the center stack next to the shift lever. Pressing the button produces a green glow from within. We shifted into Drive and rolled out silently with the Volt running purely on battery power as we circled the loop trying to run down the battery so we could experience the charge sustaining mode.
What we saw that day in NYC was a description of new power train architecture then dubbed E-Flex. GM folk on hand that day built-in vehicle line executive Tony Posawatz and former VP for environmental affairs Beth Lowery. They explained that among the biggest training learned from the EV1 program were that range anxiety and lack of practicality would make a car like EV1 nearly impossible to sell in the mass market. The engineers went back to the drawing board to address those issues and came up with the extended range electric vehicle, or ER-EV. The Volt concept was approved for production mere months after it was revealed at the 2007 Detroit Auto Show. At this week's LA Auto Show, GM is publicly showing the production intent version of the Volt. Before that, however, we were among the first to drive a Volt with its range extender running. Read all about it after the jump.
We've had two previous in-motion experiences with the Volt. Last April we had the opportunity to drive one of the powertrain mules, which put the renamed Voltec powertrain into the body shell of the Cruze that shares its platform with the Volt. In August we got to ride (not drive) in one of the pre-production Volt integration vehicle engineering release prototypes (IVERs) with now former global chief engineer Frank Weber.
We trekked out to Dodger Stadium on Sunday afternoon before this week's press days for the LA Auto Show for our session with the actual preproduction Volt. Chevrolet set up a driving loop in one of the parking lots where we got to try out a variety of different maneuvers with the car. This time we would get to actually drive the pre-production car from pure battery power to its charge sustaining mode.
The car that GM made available was one of the 80 IVER pre-production prototypes built this past summer. Unlike the other IVERs, this one was cleaned up and finished for auto show display and media drives. Most inner surfaces of these IVERs don't have the proper graining that will be on production cars or the production light clusters, but GM pulled together enough prototype parts to make them look essentially complete. In addition, unlike most of the IVERs that were finished off in primer grey, this car was painted in the same silver-green color that was the subject of GM's color contest. The winner of the contest will be announced on Tuesday here in LA.
Like many modern cars, the Volt doesn't uses a fob instead of a key with a start/stop button on the left side of the center stack next to the shift lever. Pressing the button produces a green glow from within. We shifted into Drive and rolled out silently with the Volt running purely on battery power as we circled the loop trying to run down the battery so we could experience the charge sustaining mode.